

Moving Data Over Networks

Network-Based Data Transfer at NERSC

Eli Dart, Network Engineer
ESnet Science Engagement
Lawrence Berkeley National Laboratory

NERSC Users Group Training Berkeley, CA February 24, 2016

Outline

- Context
- Science DMZ overview
- Data Transfer Nodes
- Handoff to Shreyas Cholia

Science Networks for Science

- The global Research & Education (R&E) network ecosystem is comprised of hundreds of international, national, regional and local-scale networks – each independently owned and operated.
- These networks are part of and connected to the Internet, but are engineered specifically for high-performance scientific applications

Effective High Performance Data Transfer

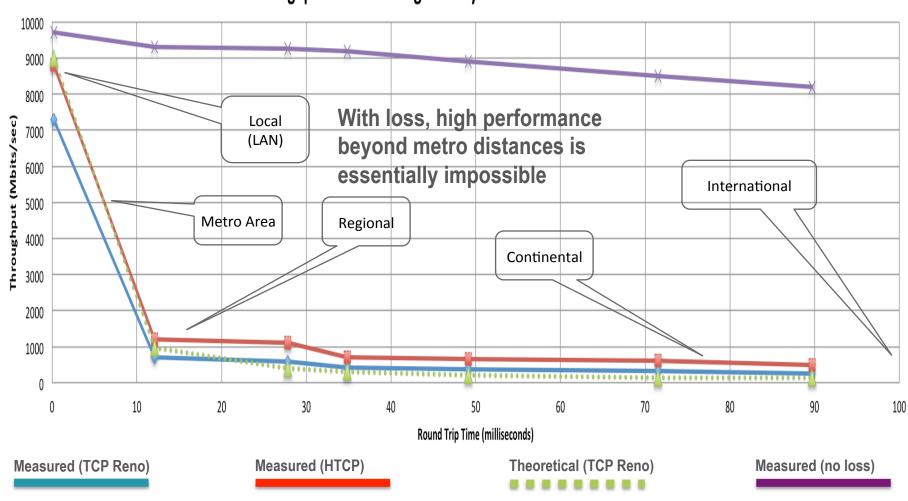
- Data transfers between resources connected to R&E networks can do much better than data transfers which use the commodity Internet
 - Terabytes are no problem
 - Petabytes are feasible
- Just need to make sure we do a couple of things
 - Long distance portions work well in general
 - Large-scale computing centers work well in general
 - Local configuration is really important
- NERSC has high-performance data resources
 - Fast networks
 - Fast systems and filesystems
- This talk will describe what you can do to interface with NERSC effectively

Motivation

- Networks are an essential part of data-intensive science
 - Connect data sources to data analysis
 - Connect collaborators to each other
 - Enable machine-consumable interfaces to data and analysis resources (e.g. portals), automation, scale
- Performance is critical
 - Exponential data growth
 - Constant human factors
 - Data movement and data analysis must keep up
- Effective use of wide area (long-haul) networks by scientists has historically been difficult
- Some of this is for your system administrator
 - Point your sysadmin to http://fasterdata.es.net/ for more info
 - Feel free to follow up with me later engage@es.net

The Central Role of the Network

- The very structure of modern science assumes science networks exist: high performance, feature rich, global scope
- What is "The Network" anyway?
 - "The Network" is the set of devices and applications involved in the use of a remote resource
 - This is not about supercomputer interconnects
 - This is about data flow from experiment to analysis, between facilities, etc.
 - User interfaces for "The Network" portal, data transfer tool, workflow engine
 - Therefore, servers and applications must also be considered
- What is important? Ordered list:
 - 1. Correctness
 - 2. Consistency
 - Performance


TCP – Ubiquitous and Fragile

- Networks provide connectivity between applications running on hosts
 - From an application's perspective, the interface to "the other end" is a socket
 - Host operating system kernel provides socket interface, kernel implements TCP where the application can't see
 - Communication is between applications mostly over TCP
- TCP the fragile workhorse
 - TCP is (for very good reasons) timid packet loss is interpreted as congestion
 - Like it or not, TCP is used for the vast majority of data transfer applications (more than 95% of ESnet traffic is TCP)
 - Packet loss in conjunction with latency is a performance killer

A small amount of packet loss makes a huge difference in TCP performance

Throughput vs. Increasing Latency with .0046% Packet Loss

Working With TCP In Practice

- Far easier to support TCP than to fix TCP
 - People have been trying to fix TCP for years limited success
 - Like it or not we're stuck with TCP in the general case
- Pragmatically speaking, we must accommodate TCP
 - Sufficient bandwidth to avoid congestion
 - Zero packet loss
 - Verifiable infrastructure
 - Networks are complex
 - Must be able to locate problems quickly
 - Small footprint is a huge win small number of devices so that problem isolation is tractable

Putting A Solution Together

- Effective support for TCP-based data transfer
 - Design for correct, consistent, high-performance operation
 - Design for ease of troubleshooting
- Easy adoption is critical
 - Large laboratories and universities have extensive IT deployments
 - Drastic change is prohibitively difficult
- Cybersecurity defensible without compromising performance
- Borrow ideas from traditional network security
 - Traditional DMZ
 - Separate enclave at network perimeter ("Demilitarized Zone")
 - Specific location for external-facing services
 - Clean separation from internal network
 - Do the same thing for science Science DMZ

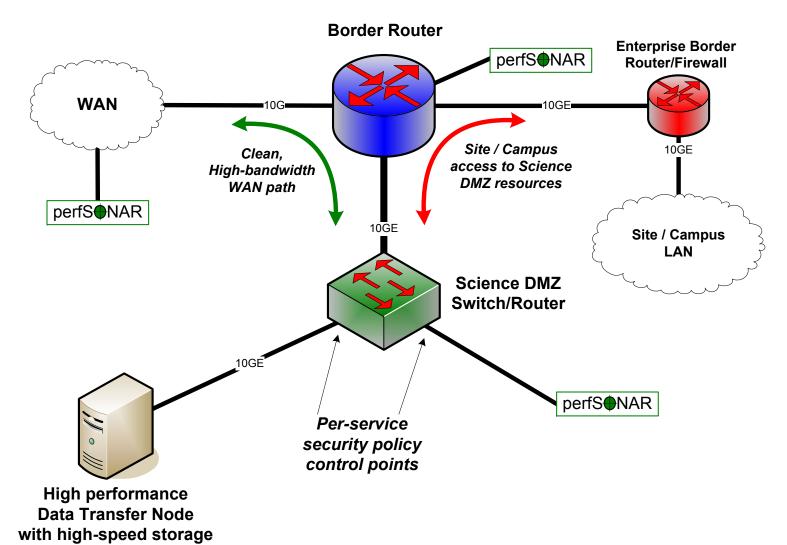
The Science DMZ Design Pattern

Dedicated
Systems for Data
Transfer

Data Transfer NodeNetworkscience DMZ Performance perfSONAR

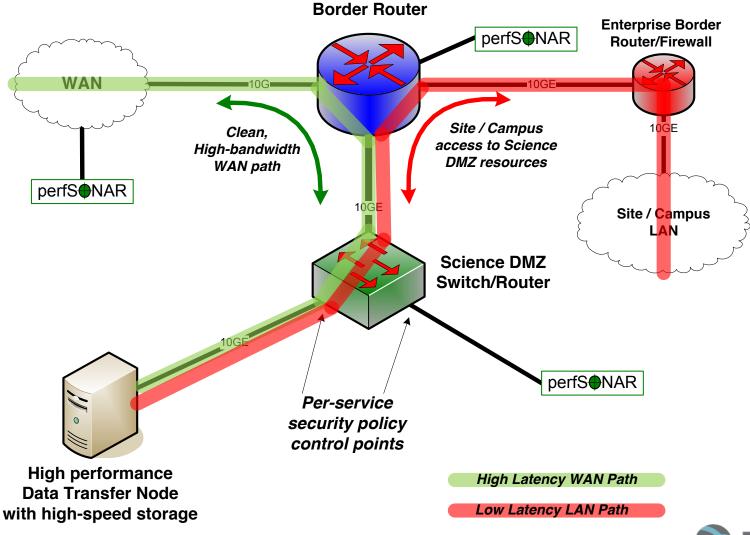
- High performance Architecture Dedicated networksting &
- Configured specifically for data transfer
- Proper tools

- location for high-speed data resources
- Appropriate security
- Easy to deploy no need to redesign the whole network
- Verify correct operation
 Widely deployed in ESnet
 and other networks, as
 well as sites and facilities

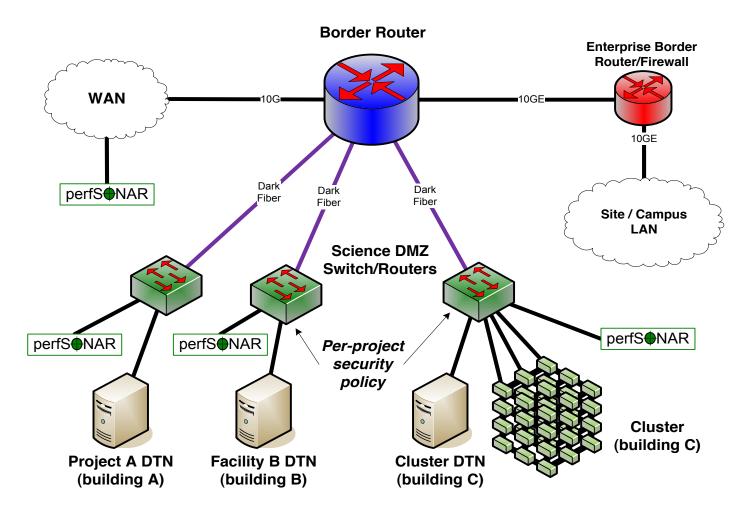


Abstract or Prototype Deployment

- (This section is for your system administrator send them to me, use engage@es.net)
- Add-on to existing network infrastructure
 - All that is required is a port on the border router
 - Small footprint, pre-production commitment
- Easy to experiment with components and technologies
 - DTN prototyping
 - perfSONAR testing
- Limited scope makes security policy exceptions easy
 - Only allow traffic from partners
 - Add-on to production infrastructure lower risk than rebuilding existing infrastructure

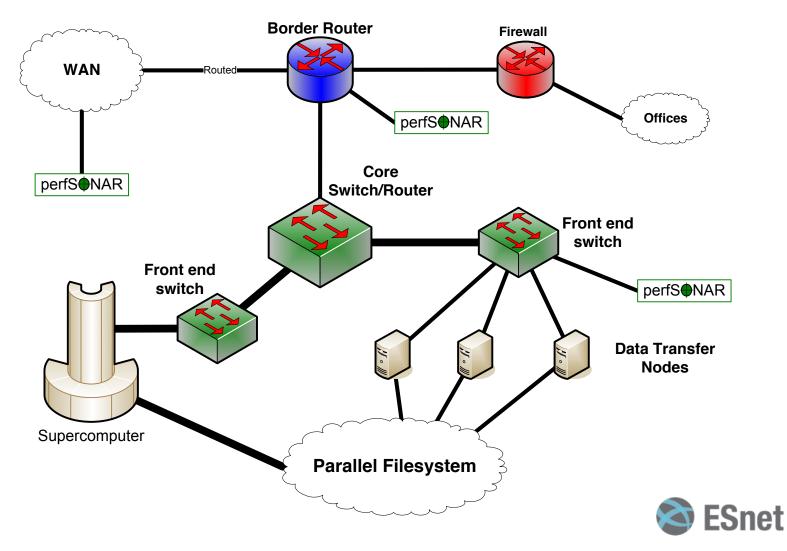


Science DMZ Design Pattern (Abstract)

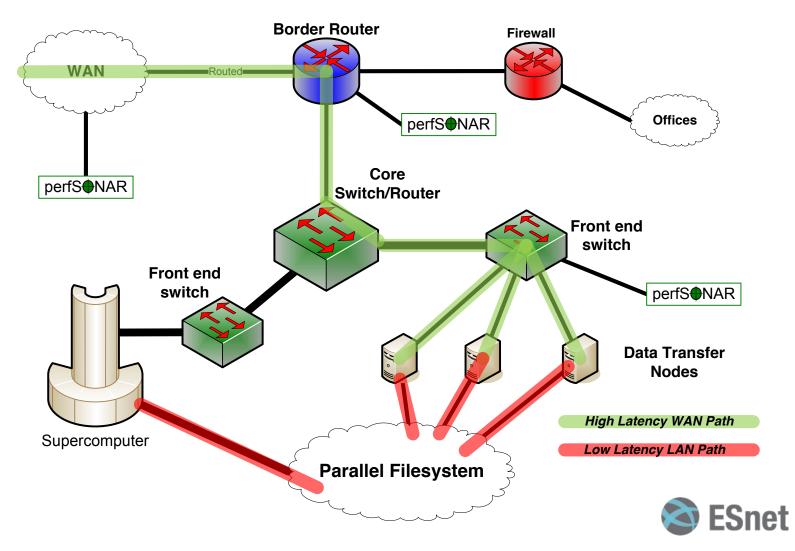


Local And Wide Area Data Flows

Modular Architecture – Multiple Science DMZs



Supercomputer Center Deployment


- High-performance networking is assumed in this environment
 - Data flows between systems, between systems and storage, wide area, etc.
 - Global filesystem often ties resources together
 - Portions of this may not run over Ethernet (e.g. IB)
 - Implications for Data Transfer Nodes
- "Science DMZ" may not look like a discrete entity here
 - By the time you get through interconnecting all the resources, you end up with most of the network in the Science DMZ
 - This is as it should be the point is appropriate deployment of tools, configuration, policy control, etc.
- Office networks can look like an afterthought, but they aren't
 - Deployed with appropriate security controls
 - Office infrastructure need not be sized for science traffic

HPC Center

HPC Center Data Path

Common Threads

- Two common threads exist in all these examples
- Accommodation of TCP
 - Wide area portion of data transfers traverses purpose-built path
 - High performance devices that don't drop packets
- Ability to test and verify
 - When problems arise (and they always will), they can be solved if the infrastructure is built correctly
 - Small device count makes it easier to find issues
 - Multiple test and measurement hosts provide multiple views of the data path
 - perfSONAR nodes at the site and in the WAN
 - perfSONAR nodes at the remote site

Dedicated Systems – Data Transfer Node

- The DTN is dedicated to data transfer
- Set up **specifically** for high-performance data movement
 - System internals (BIOS, firmware, interrupts, etc.)
 - Network stack
 - Storage (global filesystem, Fibrechannel, local RAID, etc.)
 - High performance tools
 - No extraneous software
- Limitation of scope and function is powerful
 - No conflicts with configuration for other tasks
 - Small application set makes cybersecurity easier key point

Data Transfer Tools For DTNs

- Parallelism is important
 - It is often easier to achieve a given performance level with four parallel connections than one connection
 - Several tools offer parallel transfers, including Globus/GridFTP
- Latency interaction is critical
 - Wide area data transfers have much higher latency than LAN transfers
 - Many tools and protocols assume a LAN
- Workflow integration is important
- Key tools: Globus Online, HPN-SSH
- ESnet test DTNs: http://fasterdata.es.net/performance-testing/DTNs/

Data Transfer Tool Comparison

- In addition to the network, using the right data transfer tool is critical
- Data transfer test from Berkeley, CA to Argonne, IL (near Chicago).
 RTT = 53 ms, network capacity = 10Gbps.

SCP: 140 Mbps

HPN patched SCP: 1.2 Gbps

FTP 1.4 Gbps

GridFTP, 4 streams 5.4 Gbps

GridFTP, 8 streams 6.6 Gbps

- NERSC DTNs have both HPN-SSH and Globus
- Key point your local DTN and network connection significantly affect your ability to move data in and out of NERSC

Performance Between Computing Facilities

Handoff to Shreyas Cholia

• Thanks!

